
Yangmin Li
e-mail: ymli@umac.mo

Qingsong Xu
e-mail: ya47401@umac.mo

Department of Electromechanical Engineering,
Faculty of Science and Technology,

University of Macau,
Av. Padre Tomás Pereira S.J.,

Taipa, Macao SAR, China

Kinematic Analysis and Design of
a New 3-DOF Translational
Parallel Manipulator
A new three degrees of freedom (3-DOF) translational parallel manipulator (TPM) with
fixed actuators called a 3-PRC TPM is proposed in this paper. The mobility of the
manipulator is analyzed via screw theory. The inverse kinematics, forward kinematics,
and velocity analysis are performed and the singular and isotropic configurations are
identified afterward. Moreover, the mechanism design to eliminate all singularities and
generate an isotropic manipulator has been presented. With the variation on architectural
parameters, the reachable workspace of the manipulator is generated and compared.
Especially, it is illustrated that the manipulator in principle possesses a uniform work-
space with a constant hexagon shape cross section. Furthermore, the dexterity charac-
teristics are investigated in the local and global sense, respectively, and some consider-
ations for real machine design have been proposed as well. �DOI: 10.1115/1.2198254�
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1 Introduction
In recent years, the progress in the development of parallel

manipulators �PMs� has been accelerated since PMs possess many
advantages over their serial counterparts in terms of high accu-
racy, velocity, stiffness, and payload capacity, therefore allowing
their wide range of applications as industrial robots, flight simu-
lators, micromanipulators, and parallel machine tools, etc. How-
ever, the most notable drawback of parallel manipulators is their
relatively limited workspace.

A parallel manipulator typically consists of a mobile platform
that is connected to a fixed base by several limbs or legs in par-
allel. An exhaustive enumeration of parallel robots’ mechanical
architectures and their versatile applications are described in �1�.
Most six degrees of freedom �6-DOF� parallel manipulators are
based on the Gough-Stewart platform architecture due to the ad-
vantages mentioned above. However, 6-DOF is not necessarily
required in many situations.

Therefore, in recent years, the limited-DOF manipulators that
both maintain the inherent advantages of parallel mechanisms and
possess several other advantages in terms of the total cost reduc-
tion in manufacturing and operations, are attracting the attention
of various researchers �2–4�. Many spatial 3-DOF parallel ma-
nipulators have been designed and investigated for relevant appli-
cations, such as the famous DELTA robot with three translational
DOF whose concept then has been realized in many different
configurations �5�, the Orthoglide parallel robot with pure transla-
tional DOF �6�, spherical 3-DOF mechanisms with pure rotational
motions, and �3-PRS� parallel manipulators with mixed DOF
�7–9�, etc.

Among these architectures, translational parallel manipulators
�TPMs� have a potentially wide range of applications that need a
pure translational motion in case of a motion simulator, a posi-
tioning tool of an assembly line, and others. Several other types of
architectures have been proposed to achieve pure translational
motions with different theoretical approaches, like the �3-UPU�
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platform �10�, �3-RUU�, �3-PUU� mechanisms �11�, �3-RPC� ar-
chitecture �12�, �3-CRR� manipulator �13,14�, etc. Here the nota-
tion of R, P, U, C, and S denote the revolute, prismatic, universal,
cylindrical, and spherical joint, respectively.

In this paper, a new type of manipulator with 3-PRC topology
actuated by fixed actuators is proposed to achieve three pure trans-
lational DOF. The fixed actuators make it possible that the moving
components of the manipulator do not bear any loads of the ac-
tuators. This enables large powerful actuators to drive relatively
small structures in order to facilitate the design of manipulators
with faster, stiffer, and stronger characteristics. Additionally, being
an overconstrained mechanism, the proposed 3-PRC TPM is con-
structed using fewer links and joints than it is expected, and pos-
sesses a much simpler structure than most of the existed TPMs,
that leads to an extensive reduction in cost and complexity of the
device. To the knowledge of the authors, the described 3-PRC
TPM never appeared before in either academia or industry.

The remainder of the paper is organized as follows. After a
short description of the kinematic architecture, the mobility of the
manipulator is analyzed via screw theory in Sec. 2. The inverse
and forward kinematics solutions are derived in closed form in
Sec. 3, and the velocity analysis is performed in Sec. 4. Then in
Sec. 5, the singular configurations are identified and the methods
to eliminate them are proposed. In addition, the isotropic configu-
rations are derived in Sec. 6. For a real machine design, it is also
necessary to determine how the kinematic features vary with the
changing of architectural parameters. Motivated by this, with the
variations of the mobile platform size and actuators layout angle,
the workspace is generated and compared in Sec. 7, and the dex-
terity analysis of the manipulator is performed in detail in Sec. 8.
Finally, some concluding remarks involving design considerations
are given in Sec. 9.

2 Description and Mobility Analysis of the
Manipulator

2.1 Architecture Description. The computer aided design
�CAD� model and schematic diagram of a 3-PRC TPM is shown
in Figs. 1 and 2, respectively. It consists of a mobile platform, a
fixed base, and three limbs with identical kinematic structure.
Each limb connects the fixed base to the mobile platform by a P

joint, a R joint, and a C joint in sequence, where the P joint is
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driven by a linear actuator assembled on the fixed base. Thus, the
mobile platform is attached to the base by three identical PRC
linkages. The following mobility analysis shows that in order to
keep the mobile platform from changing its orientation, it is suf-
ficient for the three axes of joints within the same limb to satisfy
some certain geometric conditions. That is, �i� the R joint axis �ri�
and C joint axis �ci� within the i-th limb, for i=1, 2, and 3, are
parallel to the same unit vector si0, and �ii� the limbs are arranged
so that si0�s j0 for i� j, and i, j=1, 2, and 3.

2.2 Mobility Analysis. The general Grübler-Kutzbach crite-
rion is useful in mobility analysis for many parallel manipulators,
however it is difficult to apply this criterion directly to mobility
analysis of overconstrained limited-DOF parallel manipulators.
For example, the number of DOF of a 3-PRC TPM given by the
general Grübler-Kutzbach criterion is

Fig. 1 A 3-PRC translational parallel manipulator
Fig. 2 Schematic representation of a 3-PRC TPM
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F = ��n − j − 1� + �
i=1

j

f i = 6�8 − 9 − 1� + 12 = 0 �1�

where � represents the dimension of task space, n is the number of
links, j is the number of joints, and f i denotes the degrees of
freedom of joint i.

Another drawback of the general Grübler-Kutzbach criterion is
that it can only derive the number of DOF of some mechanisms
but cannot obtain the properties of the DOF, i.e., whether they are
translational or rotational DOF.

On the contrary, we can effectively analyze the mobility of a
3-PRC TPM by resorting to screw theory �4�. For a limited-DOF
parallel manipulator, the motion of each limb that can be treated
as a twist system is guaranteed under some exerted structural con-
straints which are termed as a wrench system. The wrench system
is a reciprocal screw system of the twist system for the limb, and
a wrench is said to be reciprocal to a twist if the wrench produces
no work along the twist. The mobility of the manipulator is then
determined by the combined effect of wrench systems of all limbs.

For a 3-PRC TPM, the twist system for each limb is a four-
order screw system, and it is not difficult to derive the wrench
system that is a reciprocal screw system of order 2 which exerts
two constraint couples to the mobile platform with their axes per-
pendicular to the axis of the R joint. The wrench system of the
mobile platform, that is a linear combination of wrench systems of
all the three limbs, is a system of order 3 because the three wrench
systems of order 2 consist of six couples which are linearly de-
pendent and form a screw system of order 3. Since the direction of
each R joint axis satisfies the conditions described above, i.e., it is
invariable, the wrench systems restrict three rotations of the mo-
bile platform with respect to the fixed base at any instant. Thus
leads to a translational parallel manipulator.

3 Kinematic Modeling

3.1 Inverse Kinematic Modeling. The purpose of the inverse
kinematics issue is to solve the actuated variables from a given
position of the mobile platform.

To facilitate the analysis, as shown in Figs. 2 and 3, we assign
a fixed Cartesian frame O�x ,y ,z� at the centered point O of the
fixed base, and a moving Cartesian frame P�u ,v ,w� on the tri-
angle mobile platform at the centered point P, with the z and w
axes perpendicular to the platform, and the x and y axes parallel to
the u and v axes, respectively.

In addition, the i-th limb CiBi �i=1,2 ,3� with the length of l is
connected to the mobile platform at point Bi which is a point on
the axis of the i-th C joint. Bi� denotes the point on the mobile
platform that is coincident with the initial position of Bi, and the
three points Bi� for i=1, 2, and 3 lie on a circle of radius b. The
three rails MiNi intersect each other at point D and intersect the

Fig. 3 Geometry of one typical kinematic chain
x-y plane at points A1, A2, and A3 that lie on a circle of radius a.
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The sliders of P joints Ci are restricted to move along the rails
between Mi and Ni. Moreover, the axis of the P joint is perpen-
dicular to the axes of R and C joints within the i-th limb. Angle �
is measured from the fixed base to rails MiNi and is defined as the
layout angle of actuators. In order to obtain a compact architec-
ture, the value of � is designed within the range of �0 deg,

90 deg�. Angle �i is defined from the x axis to OAi
� in the fixed

frame, and also from the u axis to PBi�
� in the moving frame.

Without losing generality, let the x-axis point along OA1
� , and the

u-axis direct along PB1�
� . Then, we have �1=0 deg. Additionally,

let dmax and smax denote the maximum stroke of linear actuators
and C joints, respectively, i.e.,

−
dmax

2
� di �

dmax

2
�2�

−
smax

2
� si �

smax

2
�3�

for i=1, 2, and 3.
As shown in Fig. 3, the position vectors of points Ai and Bi�

with respect to frames O and P, respectively, can be written as Oai
and Pb�i, where a leading superscript indicates the coordinate
frame with respect to which a vector is expressed. For brevity, the
leading superscript will be omitted whenever the coordinate frame
is the fixed frame, e.g., ai=

Oai. Generally, the position and orien-
tation of the mobile platform with respect to the fixed frame can

be described by a position vector p= �px py pz�T=OP�, and a 3
�3 rotation matrix ORP. Since the mobile platform of a 3-PRC
TPM possesses only a translational motion, ORP becomes an iden-
tity matrix. Then, we have bi�= pbi�.

Referring to Fig. 3, a vector-loop equation can be written for
the i-th limb as follows:

lli0 = Li − didi0 �4�

with

Li = p + bi� + sisi0 − ai �5�

where li0 is the unit vector along CiBi
� , di represents the linear

displacement of the i-th actuated joint, di0 is the unit vector di-
recting along rail MiNi, si is the stroke of the i-th C joint, and si0
denotes the unit vector parallel to the axes of the C and R joints of
limb i, which can be derived by

si0 = �− s�i c�i 0�T �6�

where c stands for cosine, and s stands for sine.
Substituting Eq. �5� into Eq. �4� and dot-multiplying both sides

of the expression by si0 allows the derivation of si, i.e.,

si = − si0
T p �7�

Dot-multiplying Eq. �4� with itself and rearranging the items,
yields

di
2 − 2didi0

T Li + Li
TLi − l2 = 0 �8�

Solving Eq. �8�, leads to solutions for the inverse kinematics
problem

di = di0
T Li ± ��di0

T Li�2 − Li
TLi + l2 �9�

It can be observed that there exist two solutions for each actu-
ated variable, hence there are totally eight possible solutions for a
given mobile platform position. To enhance the stiffness of the
manipulator, only the negative square root in Eq. �9� is selected in
this paper to yield a unique solution where the three legs are
inclined inward from top to bottom.

3.2 Forward Kinematic Modeling. Given a set of actuated

inputs, the position of the mobile platform can be solved by the

Journal of Mechanical Design
forward kinematic analysis.
In view of Eqs. �4� and �5�, we can derive that

p + sisi0 − ei = lli0 �10�

where

ei = ai + didi0 − bi� = �eix eiy eiz�T �11�
Dot-multiplying Eq. �10� with itself and considering Eqs. �6�,

�7�, and �11�, yields

�pxc
2�i + pyc�is�i − eix�2 + �pxc�is�i + pys

2�i − eiy�2 + �pz − eiz�2

= 0 �12�

which is a system of three second-degree algebraic equations in
the unknowns of px, py, and pz.

3.2.1 Forward Kinematics Solutions. The Sylvester dialytic
elimination method is applied to reduce the system of Eq. �12� to
an eighth-degree polynomial in only one variable.

First in order to eliminate py, writing Eq. �12� for i=2 and 3,
respectively, into a second-degree polynomial in py

Apy
2 + Bpy + C = 0 �13�

Dpy
2 + Epy + F = 0 �14�

where A, B, C, D, E, and F are all second-degree polynomials in
px and pz.

Taking Eq. �14��A-Eq. �13� �D and Eq. �14��C-Eq. �13� �F
respectively, and rewriting the two equations into the matrix form
as

	AE − BD AF − CD

CD − AF CE − BF

	py

1

 = 	0

0

 �15�

Equation �15� represents a system of two linear equations in py
and 1. The following equation can be obtained by equating the
determinant of the coefficient matrix to zero:

�AE − BD��CE − BF� + �AF − CD�2 = 0 �16�

Second for the purpose of eliminating px, we write Eq. �16� in
the form of

Lpx
4 + Mpx

3 + Npx
2 + Ppx + Q = 0 �17�

where L, M, N, P, and Q can be shown to be second-degree
polynomials in pz

Substituting �1=0 deg into Eq. �12� for i=1, yields

�px − e1x�2 + e1y
2 + �pz − e1z�2 = l2 �18�

which can be rewritten as

Gpx
2 + Hpx + I = 0 �19�

where G, H, and I are all second-degree polynomials in pz
Now we can eliminate the unknown px from Eqs. �17� and �19�

as follows:
Taking Eq. �19��Lpx

2-Eq. �17� �G, we can obtain

�HL − GM�px
3 + �IL − GN�px

2 − GPpx − GQ = 0 �20�

Taking Eq. �19���Lpx
3+Mpx

2�-Eq. �17���Gpx+H�, yields

�GN − LI�px
3 + �GP + HN − MI�px

2 + �GQ + HP�px + HQ = 0

�21�

Multiplying Eq. �19� by px, we have

Gpx
3 + Hpx

2 + Ipx = 0 �22�
Equations �19�–�22� can be considered as four linear homoge-

neous equations in the four variables of px
3, px

2, px, and 1. The

characteristic determinant is
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�
HL − GM IL − GN − GP − GQ

GN − LI GP + HN − MI GQ + HP HQ

G H I 0

0 G H I
� = 0

�23�
Expanding Eq. �23� results in an eighth-degree polynomial in

pz. It follows that there are at most eight solutions for pz.
Once pz is found, px and py can be solved by using Eqs. �19�

and �13� in sequence. There are total of 32 sets of solutions for px,
py, and pz.

Although the number of solutions is considerably large, it can
be shown that only one solution is feasible and the preferred so-
lution can be determined by examining the physical constrains of
the mechanism.

3.2.2 A Case Study. In order to illustrate the derived forward
kinematics solutions, an example is introduced to identify the con-
figurations of the manipulator.

The architectural parameters of a 3-PRC TPM are described in
Table 1. Assume that the actuated values are d1=0, d2=0, and
d3=0. Then, the polynomial of Eq. �23� becomes

2.8477z8 + 4.3284z6 + 1.9136z4 + 0.0714z2 − 0.0800 = 0

�24�

which has eight solutions for z, and the solutions for x and y can
be generated from Eqs. �19� and �13� in sequence, which are
shown in Table 2, where the imaginary values of z have no mean-
ings, and the configurations with positive values of pz can only be
implemented by resembling the mechanism. In addition, it is clear
to see from the following Fig. 5 that configurations 2–4 do not lie
in the range of the manipulator workspace subject to physical
constraints imposed by stroke limits of C joints and motion limits
of linear actuators. Thus, only configuration 1 stands for the real
solution, and the unique feasible configuration is an important
feature for real time control in robotic applications.

Table 1 Architectural parameters of a 3-PRC TPM

Parameter
Value
�m� Parameter

Value
�deg�

a 0.6 � 45
b 0.3 �1

0
l 0.5 �2

120
dmax

0.4 �3
240

smax
0.2

Table 2 Forward kinematics solutions obtained via Sylvester
dialytic elimination method

No. z �m� x �m� y �m� Configuration

0 0 1
0.6928 2

1 −0.4000 0.6000 0.3464 3
1.0392 4

2 0.4000 — — —
3 0.7483i — — —
4 −0.7483i — — —
5 0.7483i — — —
6 −0.7483i — — —
7 0.7483i — — —
8 −0.7483i — — —
732 / Vol. 128, JULY 2006
4 Velocity Analysis
Substituting Eq. �5� into Eq. �4� and differentiating the result

with respect to time, leads to

ḋidi0 = ẋ − l�i � li0 + ṡisi0 �25�

where �i is the vector of angular velocities for the i-th limb with
respect to the fixed frame, and ẋ= �ṗx ṗy ṗz�T denotes the vec-
tor of linear velocities for the mobile platform.

To eliminate the passive variable �i, we dot multiply both sides
of Eq. �25� by li0, this gives

li0
T di0ḋi = li0

T ẋ �26�

Writing Eq. �26� three times, once for each i=1, 2, and 3, yields
three scalar equations, which can be written into a matrix form

Jqq̇ = Jxẋ �27�
where

Jq = �l10
T d10 0 0

0 l20
T d20 0

0 0 l30
T d30


3�3

, Jx = �l10
T

l20
T

l30
T 

3�3

�28�

and q̇= �ḋ1 ḋ2 ḋ3�T is the vector of actuated joint rates.
When the manipulator is away from singularities, the following

velocity equation can be derived from Eq. �27�:

q̇ = Jẋ �29�
where

J = Jq
−1Jx = �

l10
T

l10
T d10

l20
T

l20
T d20

l30
T

l30
T d30

 = �t1
T

t2
T

t3
T  �30�

is defined as the Jacobian matrix of a 3-PRC TPM, which relates
output velocities to the actuated joint rates.

5 Singular Configurations
Singular configurations are particular poses for the mobile plat-

form of a parallel manipulator, in which the manipulator loses its
inherent rigidity and the end effector has uncontrollable DOF, in
other words, there exists an instantaneous gain or loss of DOF
which results in a loss of the controllability of the manipulator.
Therefore, the analysis of parallel manipulator singularities, which
is necessary for both the design and control purposes, has drawn
considerable attention �15–17�. In the following sections, all kinds
of singular configurations are identified, and the mechanism de-
sign to eliminate them from the manipulator workspace is pre-
sented.

5.1 Determination of Singular Configurations. Four kinds
of singularities can be derived for a 3-PRC TPM as follows:

�1� The first kind of singularity, which is also called the
inverse kinematics singularity, occurs when Jq is not of
full rank and Jx is invertible, i.e., det�Jq�=0 and
det�Jx��0.

From Eq. �28�, we can see this is the case when
li0
T di0=0 for i=1, 2, or 3, i.e., the direction of one or

more legs are perpendicular to the axial directions of the
corresponding actuated joints. In this situation, the mo-
bile platform loses one or more DOF. Figure 4�a� illus-
trates an inverse kinematics singular configuration with
link C1B1 perpendicular to DA1 in the case of 0 deg

���90 deg. It is observed that link C1B1 is inclined
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outward from top to bottom. Since only the configura-
tions with the three legs being all inclined inward from
top to bottom are selected in order to enhance the stiff-
ness of the manipulator, this kind of singularity will not
occur for the 3-PRC TPM in case of 0 deg��
�90 deg.

�2� The second kind of singularity named the direct kine-
matics singularity occurs when Jx is not of full rank
while Jq is invertible, i.e., det�Jq��0 and det�Jx�=0.

From Eq. �28�, we can deduce that it is the case when
li0, for i=1, 2, and 3, become linearly dependent. Physi-
cally, this type of singularity occurs when two or three
of the legs are parallel to one another, or the three legs
lie in a common plane. Under such cases, the manipu-
lator gains one or more DOF even when all actuators are
locked. One direct kinematics singular configuration is
shown in Fig. 4�b�, where links B2C2 and B3C3 are par-
allel to each other. With all actuators locked, the mobile
platform still possesses an infinitesimal translation in
the direction perpendicular to a plane defined by vectors
l30 and s30.

�3� The third kind of singularity, which is also called the
combined singularity, occurs when Jq and Jx become
simultaneously not invertible, i.e., det�Jq�=0 and
det�Jx�=0. Under this type of singularity, the mobile
platform can undergo infinitesimal motions even when
the actuators are locked, or equivalently, it cannot resist
to forces or moments in one or more directions even if
all actuators are locked. An infinitesimal motion of ac-
tuators gives no motion of the mobile platform.

This kind of singularity is architectural parameters
dependent, and can only occur for a 3-PRC TPM when

�=0 deg and �DCi
� � =b with three vectors li0 are all

perpendicular to the base plane, or in the case of �
=90 deg and a=b+ l with the three vectors li0 locating
on a common plane. Also notice that in the later case,
the manipulator possesses a motion only along the
z-axis direction.

�4� Besides the three types of singularities discussed above,
the rotational singularity for a TPM may occur when the
mobile platform of a TPM can rotate instantaneously
�18�. This concept is generalized to the constraint sin-
gularity of limited-DOF parallel manipulators �19�, and
this type of singularity arises when the kinematic chains
of a limited-DOF parallel manipulator cannot constrain
the mobile platform to the planned motion any more. As
far as a 3-PRC TPM is concerned, it is shown based on
screw theory in Sec. 2 that the mobile platform cannot

Fig. 4 Representation of „a… inverse an
tions for a 3-PRC TPM
rotate at any instant, thus there are no rotational singu-
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larities for the 3-PRC TPM. Alternatively, it can be
demonstrated more accurately via a mathematical
method presented as follows, which is similar to that for
a 3-RPC TPM �12�.

Referring to Fig. 3, let ri0 and ci0 be the unit vectors for the
axes of R and C joints of the i-th limb �i=1,2 ,3�, respectively. In

addition, let �̇i and 	̇i, respectively, denote the rotation rate of the
R and C joints. The angular velocity � of the mobile platform can
be expressed in terms of the joint velocities of each limb, i.e.,

� = �̇iri0 + 	̇ici0 �31�

for i=1, 2, and 3.
In view of the geometric condition �i� mentioned in Sec. 2, i.e.,

ri0=ci0=si0, Eq. �31� can be written into

� = ��̇i + 	̇i�si0 �32�

Let f i= �̇i+ 	̇i, then Eq. �32� can be rewritten as

� = f isi0 �33�

Subtracting Eq. �33� for i=1 from Eq. �33� for i=2, Eq. �33� for
i=2 from Eq. �33� for i=3, and Eq. �33� for i=3 from Eq. �33� for
i=1, respectively, allows the derivation of a system of three linear
equations, which can be rewritten into a matrix form

Sf = 0 �34�

where

S = �− s10 s20 0

0 − s20 s30

s10 0 − s30


9�3

, f = � f1

f2

f3


3�1

, 0 = �0

�
0


9�1

Due to the geometric condition �ii� described in Sec. 2, matrix S
always has a full rank, then the only solution to the homogeneous
system of Eq. �34� is f=0, and consequently, f i=0 for i=1, 2, and
3. In view of Eq. �33�, we have

� = 0 �35�
Moreover, differentiating Eq. �31� with respect to time and in

view of ṡi0=0 since si0 is a constant unit vector, allows the gen-
eration of the angular acceleration �̇ of the mobile platform, i.e.,

�̇ = ��̈i + 	̈i�si0 �36�
In the same way, it can be shown that the following result holds

as well with the geometric conditions �i� and �ii� satisfied:

˙

b… direct kinematics singular configura-
d „
� = 0 �37�
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It can be deduced from Eqs. �35� and �37� that, satisfying the
two geometric conditions, a 3-PRC parallel manipulator acts as a
translational parallel manipulator all the time. Therefore, no con-
straint singularities can occur for the 3-PRC TPM.

5.2 Mechanism Design to Eliminate Singularities. The sin-
gular configurations can be eliminated by the approach of mecha-
nism design as follows:

�1� Elimination of the direct kinematics singularities: Ac-
cording to the aforementioned analysis, three cases can
be classified for the direct kinematics singularity.

Case I—two legs are parallel to each other. Assume
that l10 is parallel to l20. For simplicity, let the 3-PRC
TPM possess a symmetric architecture. It can be de-
duced that l10 and l20 are perpendicular to the base
plane. Generating s10 and p, and substituting them into
Eq. �7� for i=1, allows the generation of s1=�3�a−b
−d1c��, where d1=d2. With the consideration of Eq. �3�,
the maximum stroke of C joints should be designed as

smax � 2�3�a − b −
dmax

2
c�� �38�

in order to eliminate this kind of singular configurations.
Case II—the three legs are parallel to one another.

Under such a case, it is seen that the three vectors l10,
for i=1, 2, and 3, are all perpendicular to the base plane.
In addition, d1=d2=d3 and b=a−d1c�. To eliminate
this singularity, the maximum stroke of linear actuators
should be designed as

dmax � 2d1 =
2�a − b�

c�
, if � � 90 deg �39�

Case III—the three legs lie in a common plane. In
this situation, the three vectors l10 lie in a plane parallel
to the base plane. It can be deduced that d1=d2=d3 and
b+ l=a±d1c�. To eliminate this singularity, the maxi-
mum stroke of linear actuators should be designed as

dmax � 2d1 =
2�a − b − l�

c�
, if � � 90 deg �40�

�2� Elimination of the combined singularities: From the
above discussions, we can see that the combined singu-
larity occurs in the cases of �=0 deg with d1=d2=d3
=a−b, or �=90 deg with a=b+ l. Thus, we can elimi-
nate this type of singularities by the design of

dmax � 2�a − b�, if � = 0 deg �41�

a � b + l, if � = 90 deg �42�
Therefore, in a real machine design, Eqs. �38�–�42�

should be satisfied at the same time so as to eliminate all
singular configurations from the workspace of a 3-PRC
TPM.

6 Isotropic Configurations
An isotropic manipulator is a manipulator with the Jacobian

matrix having a condition number equal to 1 in at least one of its
configurations. In isotropic configurations, the manipulator per-
forms very well with regard to the force and velocity transmis-
sion. As for a 3-PRC TPM in isotropic configurations, the Joco-
bian matrix J should satisfy

JJT = 
I3�3 �43�

where I3�3 is the 3�3 identity matrix. Under such a case, in view
of Eq. �30�, the following conditions need to hold:


 = tTti = 1 �44�
i
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ti
Tt j = 0 for i � j �45�

for i , j=1, 2, and 3.
From Eq. �45�, we can see that the three vectors ti are perpen-

dicular to one another. Writing Eq. �44� three times, once for each
i=1, 2, and 3, respectively, results in three equations in the un-
knowns of px, py, and pz. Solving them, allows the generation of
isotropic configurations. Given the symmetric architecture of a
3-PRC TPM, the isotropic configurations, which lie along the z
axis, can be derived by

p = 	0 0 − ds� ±
�2

2
�a − b − dc��
T

�46�

where d=d1=d2=d3. Only the negative sign is taken into consid-
eration since we are interested only in the point below the actua-
tors.

Moreover, under such a case, the relationship between architec-
tural parameters can be derived through a careful analysis, i.e.,

l =
�6

2
�a − b − dc�� �47�

Deriving d from Eq. �47� and in view of Eq. �2�, allows the
generation of

�−
dmax

2
�

a − b −
�6

3
l

c�
�

dmax

2

if � � 90 deg

a − b =
�6

3
l if � = 90 deg � �48�

which are the isotropy conditions resulting in an isotropic 3-PRC
TPM.

7 Workspace Analysis
It is well known that compared with their serial counterparts,

parallel manipulators have relatively small workspaces. Thus the
workspace of a parallel manipulator is one of the most important
aspects to reflect its working capacity, and it is necessary to ana-
lyze the shape and volume of the workspace for enhancing appli-
cations of parallel manipulators �20,21�. Furthermore, for a real
machine design, it is of particular interest to determine how the
workspace varies with different values of the architectural param-
eters. The reachable workspace of a 3-PRC TPM presented here is
defined as the space that can be reached by the reference point P.

7.1 Algorithms. Equation �12� represents the workspace of
the i-th �i=1,2 ,3� limb, which is a set of cylinders with the radii
of l. The manipulator workspace can be derived geometrically by
the intersection of the three limbs’ workspace. From the easily
derived result, it is observed that there exists no void within the
workspace, i.e., the cross section of the workspace is consecutive
at every height. This allows the use of a numerical search method
in cylindrical coordinates by slicing the workspace into a series of
subworkspaces �8�, and the boundary of each subworkspace is
successively determined based on the inverse kinematics solutions
along with the physical constraints taken into consideration. The
total workspace volume is approximately calculated as the sum of
these subworkspaces. The adopted numerical approach can facili-
tate the dexterity analysis of the manipulator discussed later.

7.2 A Case Study. The architectural parameters of a 3-PRC
TPM shown in Table 1 have been designed so as to eliminate all
of the singular configurations from the workspace and also to
generate an isotropic manipulator. Calculating d from Eq. �47�,
and substituting it into Eq. �46�, allows the derivation of the iso-
tropic configuration, i.e., p= �0 0 −0.1804�T.

The workspace of the manipulator is generated by a developed

MATLAB program and illustrated in Fig. 5, where the isotropic
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point is also indicated. It is observed that the reachable workspace
is 120 deg symmetrical about the three motion directions of ac-
tuators from overlook, and can be divided into the upper, middle,
and lower parts. In the minor upper and lower parts of the work-
space, the cross sections have a triangular shape. While in the
definitive major middle range of the workspace, most of the ap-
plications will be performed, it is of interest to notice that the
proposed manipulator has a uniform workspace without variation
of the cross-sectional area which takes on the shape of a hexagon.

Additionally, it is necessary to identify the impact on the work-
space with the variation of architecture parameters. For the afore-
mentioned 3-PRC TPM, with the varying of mobile platform size
�b�, the simulation results of the workspace volumes are shown in
Fig. 6, which illustrates that the maximum workspace size occurs
when b=0.2. However, in view of Eqs. �38�–�42�, it can be veri-
fied that there exist singularities when b has the value of 0.1 m,
0.2 m, 0.4 m, or 0.5 m, etc. In addition, Fig. 7 describes the varia-
tion tendency of workspace size as the increasing of actuator lay-
out angle. It is observed that the maximum workspace volume
occurs when � is around 45 deg. It can be shown that there exist
no singular configurations along with the varying of �, but the
manipulator possesses no isotropic configurations if ��57.2 deg.
The simulation results reveal the roles of conditions expressed by
Eqs. �38�–�42� and �48� in designing a 3-PRC TPM.

Fig. 5 Reachable workspace of a 3-PRC TPM: „a… thr
Fig. 6 Workspace volume versus mobile platform size
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8 Dexterity Analysis
Dexterity is an important issue for design, trajectory planning,

and control of manipulators, and has emerged as a measure for
manipulator kinematic performance �22�. The dexterity of a ma-
nipulator can be thought as the ability of the manipulator to arbi-
trarily change its position and orientation, or apply forces and
torques in arbitrary directions. In this section, we focus on discov-
ering the dexterity characteristics of a 3-PRC TPM in a local sense
and global sense, respectively.

8.1 Dexterity Indices. In literatures, different indices of ma-
nipulator dexterity are introduced. One of the frequently used in-
dices is called kinematic manipulability expressed by the square
root of the determinant of JJT

� = �det�JJT� �49�

Since the Jacobian matrix �J� is configuration dependent, kine-
matic manipulability is a local performance measure, which also
gives an indication of how close the manipulator is to the singu-
larity. For instance, �=0 means a singular configuration, and
therefore we wish to maximize the manipulability index to avoid
singularities.

Another usually used index is the condition number of Jacobian
matrix. As a measure of dexterity, the condition number ranges in
value from one �isotropy� to infinity �singularity� and thus mea-

dimensional view; „b… x-y section at different heights
ee-
Fig. 7 Workspace volume versus actuators layout angle
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sures the degree of ill conditioning of the Jacobian matrix, i.e.,
nearness of the singularity, and it is also a local measure depen-
dent solely on the configuration, based on which a global dexterity
index �GDI� is proposed in �23� as follows:

GDI =

�
V

� 1

�
�dV

V
�50�

where V is the total workspace volume, and � denotes the condi-
tion number of the Jacobian and can be defined as �= �J � �J−1�,
with � • � denotes the two-norm of the matrix. Moreover, the GDI
represents the uniformity of dexterity over the entire workspace
other than the dexterity at a certain configuration, and can give a
measure of kinematic performance independent of the different
workspace volumes of the design candidates since it is normalized
by the workspace size.

8.2 Case Studies.

8.2.1 Kinematic Manipulability. Regarding a 3-PRC TPM,
since it is a nonredundant manipulator, manipulability measure �
reduces to

� = �det�J�� �51�

With actuators layout angle �=30 deg and other parameters as
described in Table 1, the manipulability of a 3-PRC TPM in the
planes of x=0, y=0, and z=−0.5 m are shown in Fig. 8. It can be
observed from Figs. 8�a� and 8�b� that in y-z and x-z planes,
manipulability is maximal when the center point of the mobile
platform lies in the z axis and at the height of the isotropic point,
and decreases when the mobile platform is far from the z axis and
away from the isotropic point. From Fig. 8�c�, it is seen that in a
plane at certain height, manipulability is maximal when the mo-

Fig. 8 Manipulability distribution of a 3-PRC TPM

Fig. 9 Distribution of reciprocal of the Jacobian matrix cond

=0, and „c… z=−0.5 m
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bile platform lies along the z axis, and decreases in case of the
manipulator approaching to its workspace boundary.

8.2.2 Global Dexterity Index (GDI). Because there exist no
closed-form solutions for Eq. �50�, the integral of the dexterity
must be calculated numerically, which can be approximated by a
discrete sum

GDI �
1

Nw
�
w�V

1

�
�52�

where w is one of Nw points which are uniformly distributed over
the entire workspace of the manipulator.

Figures 9�a� to 9�c�, respectively, illustrate the distribution of
the reciprocal of Jacobian matrix condition number in three planes
of x=0, y=0, and z=−0.5 m for a 3-PRC TPM with �=30 deg
and other parameters depicted in Table 1. It is observed that the
figures show the similar yet sharper tendencies of changes than
those described in Fig. 8.

With the changing of layout angle of actuators, we can calculate
the GDI of the 3-PRC TPM over the entire workspace, and the
simulation results are shown in Fig. 10. It can be observed that the
maximum value of GDI occurs when �=0 deg, and decreases
along with the increasing of layout angle of actuators. However, in
the case of �=0 deg, it is seen from Fig. 7 that the workspace
volume is relatively small. Since the selection of a manipulator
depends heavily on the task to be performed, different objectives
should be taken into account when the actuators layout angle of a
3-PRC TPM is designed, or alternatively, several required perfor-
mance indices may be considered simultaneously.

three planes of „a… x=0, „b… y=0, and „c… z=−0.5 m

n number for a 3-PRC TPM in three planes of „a… x=0, „b… y
in
itio
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9 Conclusions
In this paper, a novel 3-PRC TPM with fixed actuators has been

proposed. It is shown that such a mechanism can act as an over-
constrained 3-DOF TPM with certain assembling conditions sat-
isfied. The closed-form solutions for both the inverse and forward
kinematics problems have been derived, and the velocity analysis
is performed, where the Jacobian matrix relating output velocities
to the actuated joint rates has been derived, based on which the
isotropic configurations and three kinds of singularities having
been identified. Moreover, it is demonstrated that the new TPM
does not exhibit rotational singularities, i.e., the configurations in
which the mobile platform gains rotational DOF. In addition, an
approach to eliminate all singularities by a proper design of archi-
tectural parameters is proposed, and the isotropy conditions leads
to an isotropic manipulator have been derived.

The reachable workspace of the manipulator is generated by a
numerical approach, which illustrates that in the middle range of
the workspace in which most practical applications will be per-
formed, the cross section takes on a constant hexagon shape. Fur-
thermore, the workspace volume is calculated and compared at
different mobile platform sizes and actuator layout angles. With
the variation on actuator layout angle, dexterity characteristics of
the manipulator are investigated based on a local performance
measure—kinematic manipulability, and a global sense
measure—global dexterity index over the entire workspace, re-
spectively. Simulation results illustrate that different objectives
should be taken into consideration when the actuators layout angle
of a 3-PRC TPM is designed.

In addition, as an overconstrained mechanism, the problems of
variable friction in passive joints and large reaction moment have
to be considered to assure the mobility of the mobile platform for
a 3-PRC TPM. Otherwise, the mobile platform may not move or
the manipulator cannot work if there are some kinematic errors.
These issues can be solved by adding a revolute joint with its axis
along the axial direction of the first actuated prismatic joint, thus
the actual structure of limbs becomes a PRRC mechanism. This
design choice results in a nonoverconstrained manipulator and
causes no impact on the mobility and kinematics of the manipu-
lator. The results presented in this paper will be valuable in the

Fig. 10 Global dexterity index versus actuators layout angle
development of a new TPM.
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